
Reverse 
engineering
101 Course 

program



№ Track What you will learn What you will practice Lesson Practice Evaluation

0 Introduction • About your trainers

• Course roadmap

• Course structure
—

Intro — —

Intro To The GitHub 
Repository — —

1 Theory • The basics of the assembly 
language

• Working with assembly 
instructions 

• Understanding function calls

• Recognizing arguments

Introduction To ASM — —

The most common ASM 
instructions

— —

Correspondence between 
C code and ASM

Reading ASM code Quiz

Function calls — —

Calling conventions Understanding a full 
function

Quiz

Wrap-up — —

2 C-language
“Hello World”

• How to approach reverse-
engineering of programs written in C 
language

• Getting familiar with IDA and 
using the software to navigate 
inside assembly code

• Applying theory learnt in the 
previous track

Introduction — —

Simplest C Program First steps with 
IDA

Quiz

First steps with IDA

Working without debugging 
symbols

Windows API Arguments and 
constants

Checkpoint 
Quiz

Wrap-up — —



№ Track What you will learn What you will practice Lesson Practice Evaluation

3 Simple 
Lambdas

• The difference between values and 
pointers

• Transmitting the arguments by value 
and by reference

• Old-style C-like memory management, 
where programmer is in charge of 
keeping proper references

• Reconstructing custom 
structures Transmitting the 
arguments 

• Understanding value and pointer 
fields in such structures

• Practice embedded structures, 
where field is a pointer to 
another custom structure

Starting with value fields Starting with value 
fields

Quiz

Adding pointers Now it's time to add 
pointers

Quiz

Shallow and deep copying Shallow and deep 
copying

Checkpoint 
Quiz

Wrap-up — —

4 Stuck in the heap • The difference between main places 
to store the data

• Conception of stack and heap
Automatic, dynamic and static 
memory

• How the programmer’s decision 
where to store data affects the 
resulting binary

• Creating massive custom 
structures on stack and heap

• Analyzing them in resulting 
executable binary file to see 
the difference in these 
memory types

• Reversing the code with static 
variables, understand their 
position in executables

Counting hash value Counting hash 
value

Quiz

Meet the heap Meet the heap Quiz

Memory management Memory 
management

Checkpoint 
Quiz

Wrap-up — —

5 Lists and tricky 
pointers

• How custom C list looks on a binary 
level

• How to handle lists with pointers that 
point to the middle of next element

• Understanding custom data types, 
which you would met in binaries, 
further

• Continue to analyze structures, 
but a bit more complicated this 
time

• Using simple custom list to 
move towards real C++ STL 
containers

• Practice shifted pointers

Servers chain Servers chain Quiz

List it till the end List it till the end Quiz

Pointer to the insides Pointer to the 
insides

Checkpoint 
Quiz

Wrap-up — —



№ Track What you will learn What you will practice Lesson Practice Evaluation

6 C++ And OOP • How to reverse-engineer programs 
written in C++ language

• Recognizing C++ classes in 
assembly form

• Experimenting with IDA’s 
disassembler

• Working with code coming from 
the C++ STL.

Introduction A simple class Quiz

Virtual Function Table C++ 
inheritance

Checkpoint 
Quiz

The decompiler — —

STL library: The string 
class

— —

STL library: The vector 
class. Wrap-up

— —

7 Pain In The 
Containers

• How C++ STL containers look like 
in executables

• How to analyze them in compiled 
programs, creating proper 
structures

• Upon which basement std::map, 
std::set are build

• Inserting and searching for 
operations in std::map, std::set

• The difference between map 
and set on binary code level 

• Practicing surface std::map, 
set, pair analysis in binaries

Commands as dictionary Commands as 
dictionary

Quiz

Real Handlers Real handlers Quiz

Make It Set Make it set Checkpoint 
Quiz

Wrap-up — —

8 Introduction to 
Golang Reverse-
engineering

• The basics of the Go language

• How to approach reverse-
engineering when faced with 
binaries generated by its compiler

• Using a debugger in order to 
easily obtain program 
arguments and return values

Introduction Golang basics Quiz

Debuggers
The decryptor

Checkpoint 
Quiz

Working with x64dbg —

Reconstructing Go code 
from the assembly

—

Controlling execution 
with debugger

—

Go Reverse-engineering 
methodology

— —

—



№ Track What you will learn What you will practice Lesson Practice Evaluation

9 ‘Rusty’ Code

—

• Understanding non-stripped 
Rust code

• Dividing runtime and custom 
Rust code

• Demangling Rust function 
names

Simplest Esoteric 
Decryptor

Simplest 
esoteric 
decryptor

Quiz

Vector And Deep Copy Vector and 
deep copy

Quiz

Let’s Be More ‘Rusty’ Let’s be more 
‘Rusty’

Checkpoint 
Quiz

Wrap-up — —

10 A “Real” Malware • How to analyze a full infection 
chain on your own

• All tools and knowledge 
gathered up to now in the 
course: C, C++, debugging, 
etc.

Introduction Stage 1 Quiz

Stage 2 Quiz

Stage 3 Checkpoint 
Quiz

Outro.
Course summary 

— —



Thank you!

kaspersky.com Discord server: kas.pr/g2j8 Help page: kas.pr/ii9f

http://www.kaspersky.com/
https://kas.pr/g2j8
https://kas.pr/ii9f

