
www.kaspersky.com

#truecybersecurity

Get Protected
from Exploits

Kaspersky for Business

http://www.kaspersky.com

1

Get Protected from Exploits

Exploits as a part of modern threat landscape
Despite some recent trends, such as the heavy use of
non- malware components in their toolsets,
cyberattackers as a whole retain their reliance on
vulnerability exploitation as an attack spearhead, the
primary means for initial penetration. In 2016-2017, the use
of exploits increased overall by roughly a quarter, and for
corporate users alone the percentage was even higher.

The most widespread scenarios remain unchanging: either
exploit-carrying attachments to e-messages, or drive-by
attacks, including malicious links and ‘watering hole’
redirects to the same links, with exploits on hand to attack
whatever vulnerabilities the victim’s system possesses. And
it’s long been obvious that, while attackers may get lucky
and find a zero-day, most of the time it’s known
vulnerabilities that are exploited. The fact is that the
probability of finding an unpatched OS or old app still in

use is high enough to make these attacks well worthwhile.
For example, a well-known CVE-2010-2568 vulnerability,
once used by Stuxnet, remains the top performer in terms
of number of users attacked, and the WannaCry
ransomware pandemic also used a vulnerability that has
an available patch. Then again, even the most security-
aware companies sometimes have vulnerable software
running in business-critical processes – for a number of
reasons, including complicated update procedures,
compatibility issues or configuration-sensitive legacy
applications.

So protection against vulnerability exploitation remains
a primary concern for Endpoint Security. After all, the
whole data breach prevention task turns on how
effectively the attack’s spearhead can be blocked.

The exploit’s own kill chain - and counteractions
Of course, for the end user, the best possible outcome is all
that really matters: if the existing security solution successfully
prevents the attacker from doing anything malicious, that
counts as a victory.

But for the solution’s vendor, this particular phase of
a cyberattack is a very delicate point – it involves the
user’s own applications, which all too often don’t tolerate
unsubtle handling and can react with crashes and The Blue
Screen of Death. Every phase of an exploit’s own ‘kill chain’
presents different opportunities and challenges for the
defender. Let’s look at this in more detail:

1) Delivery. Typically an email attachment or website, as
above. This ends with the targeted application beginning
to process the offered data – including the exploit code.

Counteraction: Some exploits can be blocked during
this phase using proper mail server security, anti-phishing
and content analysis. A considerable amount of mass
malware is, in fact, blocked here. But more sophisticated
specimens, especially in well-prepared targeted
attacks, can shake static analysis mechanisms off their
trail. The dynamic study of everything that comes your
way in a sandbox is a good move, but, to be really
effective, it requires considerable resources and skill.
Also, in most scenarios, it would not allow blocking but
would only alert corporate security officers, which,
given the time gap between delivery and actual
sandbox detonation (there’s usually a queue), means
this is not a true defense against exploits.

2) Memory manipulation. During this phase, rogue data
is placed into different memory areas. This is not
a violation of any security principles and is mostly
harmless in itself – but at a later stage, once the
vulnerability has been exploited, this data is used in
specific attack processes.

Counteraction: There are only a limited number of
ways to insert this rogue data, and all are well known,
so modern Operating Systems offer built-in mitigations
to counter exploits at this phase. But, to be effective,
these mitigations require applications to be compiled
with particular parameters in a modern development
environment. Unfortunately, this is not possible for
some older apps. Some mitigations can be invoked
externally, but the flip side of the coin is that externally
forcing memory use restrictions can result in instability
and the crashing of the application that the security
solution is trying to protect.

3) Exploitation. Here’s where activities which aren’t part
of the general order of things start happening. Using
the existing vulnerability, the attacker coerces the
attacked app’s process into performing actions, which
may or may not be within its standard capabilities, but,
in any case, are instrumental in the attacker’s progress.
Depending on the attack scheme, this is usually
followed by shellcode execution, though in some
cases standard app functionality can be leveraged to
deliver the malware payload from the C&C server.

Counteraction: To be able to detect and influence
activities occurring during this phase, the security
solution must have access to the protected
process’s context. The only way to do this efficiently
is by performing a process injection, not unlike the
malware technique itself. While this approach offers
an opportunity to stop exploits at an earlier stage and
allows the protection of arbitrary processes, it also
suffers from considerable drawbacks. Performance
degradation and compatibility issues are not
infrequent, and their probability increases with each
mitigation technique switched on for a particular
process. Also, for processes the solution was not
previously tested with, the need for tedious trial-and-error
configuration can cause great inconvenience, especially

2

for hard-pressed generalist IT administrators. Some
vendors strongly recommend consulting with their
support teams prior to any attempts at mitigation rule
customization.

It is also worth noting that every new version-change
of the application can result in unexpected crashes and
the need to either tweak security settings to find a safe
configuration – or to refrain from using this
mechanism until (if ever) the solution’s vendor
manages to adjust it sufficiently.

4) Shellcode execution. This is where the attacker’s
arbitrary code is executed, resulting in the execution of
a malicious payload.

Counteraction: This is where the exploited process
starts doing things it’s mostly not expected to, and this
can be detected externally, using non-invasive
behavior tracking mechanisms. Such mechanisms
usually don’t require any manual configuration, which
saves a lot of time and effort for IT staff. Also,
there’s no meddling with the protected process itself,
so there’s zero chance for compatibility and
performance issues. In fairness, it should be noted that,
besides understanding what activities should be
treated as suspicious, this approach’s effectiveness
also depends on a knowledge of what the process
normally does, so it’s hardly suitable with previously
unknown apps. But then again, 99.9% of exploitation
scenarios target quite a limited number of popular
applications and system components, so the gains in
terms of hassle-free defense clearly outweigh the
limitations. This approach can also benefit from
additional sources of threat intelligence, such as lists of
known attack-related hosts and IP addresses.

1 Exploit Prevention is available in Kaspersky Endpoint Security for Business and Kaspersky Security for Virtualization Light Agent

2 See the results of independent tests by MRG Effitas and AV Comparatives.

5) Payload execution. The payload can be downloaded
as a file – or, in the case of a fully bodiless scenario,
it can be loaded and executed directly in the system’s
memory. After this point, the malicious activity starts.

Counteraction: Launching another application or
execution thread can look suspicious, especially if the
app in question is known to lack this functionality. So
this may well serve as a pretext for a security solution
to set execution to ‘pause’ and to analyze the legality
of the launch in more detail. Additional behavioral
indicators provided by execution tracking mechanisms
should allow the solution to block the payload
execution with confidence.

This particular phase applies to the whole plethora of
exploitation scenarios – any exploit’s ultimate goal is to
launch a payload. So this becomes a bottleneck –
leaving the attacker with very little space to maneuver.
Despite the fact that the exploitation has already
happened, the whole attack sequence is at its most
vulnerable right now.

As you can see, different phases of the exploit’s micro-kill
chain may require different counteraction mechanisms.
While we, in Kaspersky Lab, consider a multi-layered
approach to cybersecurity the most effective, we also
understand that providing the best outcome for customers
means not only reliable protection, but also the lowest
possible impact on existing business processes.

And so we created our Exploit Prevention1, a multi-layered
system in its own right that utilizes not only the most
effective, but also the most reliable, resource-efficient
and hassle-free combination of techniques to ensure
a smooth experience for both end users and administrators.2

Attack techniques, zero-days and Kaspersky Exploit
Prevention

While it intuitively feels safer to block an exploit as early
as possible in its kill chain, the techniques for doing this
actually pay off much less frequently than we’d wish. Multiple
compatibility issues and issues around any change in the
protected apps led us at Kaspersky Lab to decide on avoiding
most of these mitigations and focusing on non-invasive
behavioral prevention. It’s also important to remember that
these mitigations work with previously known technique
classes, which are common knowledge. So when it comes to
a zero-day exploit which uses something out of the ordinary,
they’re likely to be sidestepped by the attacker. Many of these
mitigation techniques used by vendors other than Kaspersky Lab
are, in fact, very similar to those used by well-known Microsoft
EMET – and there are multiple PoCs showcasing exactly how
these can be outmaneuvered.

On the other hand, behavioral detection uses a number of
indirect indicators. Kaspersky Exploit Prevention, for example,
can also leverage additional sources of information provided
by different security layers, such as tracking changes in
particular memory areas, addressing suspicious URLs and so
on. Both independent testing and multiple real world cases
prove that Kaspersky Exploit Prevention successfully detects
both synthetic and real zero-day exploits, despite having no
previous knowledge of the attack. Also, thanks to Exploit
Prevention, Kaspersky products demonstrate outstanding
effectiveness against exploit-using ransomware families, such
as CryptXXX, during the earlier campaign stages when no
information about these attacks has had time to build up.

Still, some mitigations don’t require process tinkering and
the heavy use of resources, and are safe to use with certain
applications – so AEP makes use of these as well.

Here’s how Kaspersky Endpoint Security armed with AEP
withstands different attack techniques (note that not all of
them are, in fact, directly related to vulnerability exploitation):

https://www.mrg-effitas.com/wp-content/uploads/2015/04/MRG_Real_world_enterprise_security_exploit_prevention_2015.pdf
https://www.av-comparatives.org/wp-content/uploads/2016/11/avc_mrg_biz_2016_10_business_en.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Alsaheel-Using-EMET-To-Disable-EMET.pdf
https://securelist.com/blog/research/73255/the-mysterious-case-of-cve-2016-0034-the-hunt-for-a-microsoft-silverlight-0-day/

3

Delivery

Memory
manipulation

Shellcode
execution

Start payload
execution

Execution
Controlled
by Behavior
Detection

Payload
running

Exploitation

Threats
Bloсked
by Exploit
Prevention

Stack
Execution

Opportunity

Stack
Pivoting

Sem
Overwriting

Passing Flow
Control to
Rop-Chain

Import/Export
Address

Table
Attack

Direct Syscall
Calls

Null
Page

Allocation

Heap
Spray

Allocation

Data
Execution

Opportunity

Dynamic
Heap Srpay

4

It’s worth mentioning that special attention is directed to
the execution of malicious scripts, e.g. PowerShell, HTA, JS/
VBS, which is one of the most popular and dangerous
techniques used in vulnerability exploitation scenarios.
Mitigation and prevention capabilities of Exploit Prevention,
combined with the post-execution detection technology of
Behavior Detection and empowered by Remediation
Engine, allow us to achieve perfect protection level,
blocking many threats of post-exploitation stage, such as:
Fileless attacks, WoW64, DLL Hijacking and Reflective
DLL injection, Loading malicious libraries from UNC
paths or by placing them on network paths, Hollow
Process Injection, Malicious PowerShell scripts,
Malicious TaskScheduler tasks, Malicious WMI
subscriptions, Malicious script execution via legitimate
executables, Application Whitelisting Bypass, Java
Lockdown, Application Lockdown and others.

Of course, some issues arise regarding mitigations provided
by the OS only. What about those cases when newer
Operating Systems or applications supporting their
embedded mitigation features can’t be used? Several
security vendors stress their solutions’ ability to provide
mitigation even in these difficult conditions - so what about
Kaspersky Lab?

Our point of view here is simple: as we said earlier, we
considered using these mitigations, and concluded that this
just didn’t pay off in most cases. This is particularly true for
legacy systems, where too many user-mode interceptions
can easily consume precious system resources and slow
the machine’s speed below a bearable limit. And
that’s putting aside the fact that, as explained above, the
majority of them can be sidestepped.
Even if a vulnerability in a venerable edition of MS Word is
exploited, we know we’ll catch it immediately afterwards,
when it starts behaving improperly. After all, the most
important thing in exploit protection is preventing the
exploit from launching the malicious payload – which is
exactly what Kaspersky Exploit Prevention does to
perfection. And in the most complicated cases, as with
WannaCry ransomware using TCP packet-based kernel
exploits, Exploit Prevention, as one of the technologies
leveraging Behavior Detection, passes the baton to the next
security layer, the post-execution protective mechanism.

With this sort of multi-layered approach, it’s no big surprise
that, as long as they had the appropriate security features
switched on, Kaspersky Lab customers suffered no damage
at all from the dreaded WannaCry pandemic.

Exploitation Technique | Mitigation Kaspersky Endpoint Security
Mitigation | Prevention

Buffer overflow | DEP (Data Execution Prevention) Provided by OS

Leveraging data at predictable locations | ASLR (Address Space Layout
Randomization)

Mitigated

Stack Pivot | Stops abuse of the stack pointer Mitigated

Null page exploit | Null Page Allocation Mitigated and Provided by OS

Placing shellcode copies at as many memory locations as possible | Heap Spray
Allocation

Prevented

Dynamic Heap Spray | Stops attacks that spray suspicious sequences on the heap Prevented

Structured Exception Handler (SEH) overwrite | SEHOP (Structured Exception
Handler Overwrite Protection)

Provided by OS

ROP-chain | Stops Return-Oriented Programming attacks Prevented

Token Swapping | Stops Escalation of Privileges Prevented

Syscall | Stops system call abuse Prevented

VBScript God Mode | Stops VBScript safety options modifications Prevented

www.kaspersky.com

© 2019 AO Kaspersky Lab. All rights reserved. Registered trademarks and service
marks are the property of their respective owners.

Kaspersky Lab
Enterprise Cybersecurity: www.kaspersky.com/enterprise
Cyber Threats News: www.securelist.com
IT Security News: business.kaspersky.com/

#truecybersecurity
#HuMachine

Expert
Analysis

HuMachine™

Big Data /
Threat Intelligence

Machine
Learning

http://www.kaspersky.com
http://www.kaspersky.com/enterprise
http://www.securelist.com
http://business.kaspersky.com

